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In ordinary diffusion theory the transfer of properties Ls determined by the local gradients of the corre- 
sponding fields. As the mean free path increases, the flux density becomes an integral  quantity and is de- 
termined by a neighborhood of  the point under considexztion of  the order of  a few mean free paths. In a 
previous ar t ic le  [1], the author proposed a model  for a one-dimensional  transfer process in l inear  rarefield- 
gas problems based on the analogy with radia t ive  transfer.  The same approach, though without d i rect ion-  
al averaging, is used in the present paper to analyze  the l inear ized Couette flow problem. The solution 
obtained here has the properties of the solution obtained by more exact methods based on the solution of 
the Boltzmann equation [3-4]. 
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s h e a r  s t r e s s ,  

mean thermal  ve loc i ty  of  molecules ,  

mean free path, 

ha l f -w id th  of  channel,  

plate veloci ty ,  

"nonequilibrium"vatue of  momentum flux density, 

transverse coordinate,  

ratio of  specif ic  heats, 

dimensionless veloci ty,  

shear stress sealed wi th  respect to the shear stress i n  f ree -molecu le  flow, 

dimensionless coordinate,  

ve loc i ty  distribution according to Millikan's solution, 

coeff ic ient  of  viscosity, 

Reynotds number, 

Knudsen number, 
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1. Consider the planar steady flow of  a raref ie ld  gas between two plates.  The plates, loca ted  at  y = +d, move 

with speeds • 0, respect ively.  Wall ref lect ion is assumed to be perfect ly diffuse, and the ref lec ted  molecules  have a 

Maxwell ian distribution corresponding to w a l l  temperature  and ve loc i ty .  Density, temperature,  and mean  free path are 

c o n s t a n t .  

First, we obtain a solution by the diffusion approximation [1]. Under s teady-s ta te  conditions we can write 

Px. ---- - -  1A pea Oq~ / Oy = c o n s t .  

The boundary conditions are 

--~/sAO~/Oy-(p--wo a t  y=d, ~/sAO(p/Oy=(p+Wo at  y = _ d .  

The equation of  transfer yields ~ = w, i . e . ,  the diffusion approximation coincides with the solution obtained by 
Mil l ikan [5] on the basis of  the Navier-Stokes equations with slip boundary conditions. In this solution the ve loc i ty  pro- 
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f i le is l inear .  The ve loc i ty  slip at  the wall and the shear stress are 

Aw k u, t 2 
"= " ~ - # ,  rxu  = .~" d t -}- k or C s M  = (17 ] M ) [ t  -a t- t f ~ - ' T M I R ]  " (1. i )  

Solutions of the k inet ic  equation [2, 3] show that  the veloci ty  profile in Couette flow is not l inear.  Near the wall  
there is a "Knudsen layer," whose thickness is a fraction of the mean free path, inside which the veloci ty  profile be -  
comes curved*. 

2. To obtain an expression for the shear stress Pxy' we construct a model  based on local  equil ibrium. Consider a 
unit area e lement  at a point z 0, moving at the veloci ty  of  this point, We shall make  the following assumptions: 

(1) The flux of  momentum carried by molecules  that pass through this surface is determined by an integral  over 
al l  space. 

(2) The number of  molecules  that col l ide  in the neighborhood of a point z is proportional to the par t ic le  density 
and inversely proportional to the mean free path A, and after collision these molecules  have a loca l  equil ibrium distri-  
bution. 

(3) The probabi l i ty  that a molecule ,  having undergone a collision, will  pass through the area e l emen t  under con- 
sideration is exp(--s/A), where s is the distance between z and z 0. 

(4) We shall restrict  the discussion to low veloci t ies ,  and assume that  after coll ision at the point z the distribution 
of the molecules  is isotropic with respect to a system of  coordinates fixed in z0. 

With these assumptions, the momentum flux per unit t ime  and unit area is 

Pxu (Y) = 2X- exp ,  
o y 
y 

2A- exp  
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~ y  
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where 0 is the angle with respect to the y axis. 

The contribution of  the molecules  re f lec ted  from the wall  is equivalent  to the contribution from an infini te  vol -  
ume of  gas loca ted  above the plane y = d and moving at  the speed w 0 (and s imi lar ly  in the case of  the Iower wail).  

Then 

i/,= d 
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The condit ion dPxy/dy = 0 leads to the in tegral  equation for the ve loc i ty  
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This equation can be written in the form (k 0 = A/d, z = ~/d) 
I 

0 

* The "Knudsen layer" has an analogy in the problem of  rad ia t ive  energy transfer between two plates held  at d i f -  

ferent temperatures.  
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This can be compared with the equation given by Willis [2] (a = 2. 7081/I<0) 
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The values of  the function Jn(X) can be determined from the data in [6]. Equation (2. 1) was solved approximately 
by reduction to a system of algebraic equations [7]. The results are shown in 
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the table below, which gives values of the velocity W = w(y)/w0 for various 
values of  the Knudsen number. One may compare these with Willis's work [2], 
which gives the values W(1) = 0. 851, 0. 7985, 0. 5038 for K = 0. 120, 0. 181, 
0.903, respectively. 

Compare also the values of the shear stress Pxy at various Knudsen num- 

bers K with the corresponding values Pxy[2] taken from [2]. 

K-~- 0.t20 0.18t 0.903 9.027 90.27 
Pxv[2] -~- 0.t89 0.261 0.623 0.936 0.992 

Pxy= O. 187 O. 2526 0.6008 O~ 92598 O. 99t289 

A comparison of the results shows that, in the case under consideration, 
the proposed model yielded shear stress values within 3-4% error (wall veloc- 
ity values were within 10% error). 

Values of  104W 

K a ~ = 0.t 0.2 0.4 0.6 0.8 0.9 t .0 

0.120 
0.t81 
0.9027 

9.027 
90.27 

.5 

t 
0. t  
0.0t  

0798 
0729 
0409 
0t06 
0019 

t596 
t460 
0818 
0213 
0036 

3196 
2926 
1647 
0424 
0075 

4808 
4409 
2502 
0641 
0112 

6455 
5942 
34t2 
0879 
0153 

7324 
6763 
39t3 
t005 
0174 

8395 
7780 
4533 
1t54 
0197 

The solution obtained here contains a "Knudsen layer." The figure shows the difference between Millikan's solution 
and the velocity profile as obtained by: 1) the Mott-Smith method, 2) the Wang Chang and Uhlenbeck method, 3) the 
Gross and Ziering [4] method, 4) the present work. The value of  the Knudsen number is K = 0.12. 
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